301.1 - Particle Size (powder and solid forms) These SRMs are intended for evaluating and calibrating specific types of particle size measuring instruments, including light scattering, electrical zone flow-through counters, optical and scanning electron microscopes, sedimentation systems, and wire cloth sieving devices. SRMs 1003c, 1004b, 1017b, 1018b and 1019b each consist of soda-lime glass beads covering a particular size distribution (PSD) range. RM 8010 is a three bottle set of different sands (A, C and D), intended for use in sieving only, and covers the sieve size range from 30 mesh to 325 mesh. SRM 659 consists of equiaxed silicon nitride particles measured using sedimentation. SRM 1978 consists of granular, irregular shaped zirconium oxide particles measured using sedimentation. SRM 1982 consists of spheroidal particles measured using sedimentation. SRM 1982 consists of spheroidal particles measured using sedimentation. SRM 1982 consists of spheroidal particles measured using sedimentation. SRM 1982 consists of spheroidal particles measured using sedimentation. SRM 1982 consists of spheroidal particles measured using sedimentation. SRM 1961 is monodisperse latex particles in a water suspension produced by the National Aeronautics and Space Administration (NASA). $RMs\ 8011,\ 8012$ and 8013 are gold nanoparticles in water. PLEASE NOTE: The tables are presented to facilitate comparisons among a family of materials to help customers select the best SRM for their needs. For specific values and uncertainties, the certificate is the only official source. | SRM
Description | 659 | 1003c | 1017b
Glass | 1018b | 1019b | 1021 | 1690 | 1691 | 1961 | 1963a | 1964 | 1978 | 1982 | 1984 | 1985 | 8010 | 8011 | 8012 | |--------------------------------------|---|--|---|--|---|---------------------------------------|---|---|---|--|---------------------|---|--|--|--|--|-----------------------------|---| | Unit Size | Particle
Size
Distribution
Standard for
Sedigraph
Calibration
(set (5)) | Glass
Beads -
Particle
Size
Distribution
(28 g) | Beads -
Particle
Size
Distribution
(100 µm to
400 µm
diameter
range)
(70 g) | Glass
(Particle
Size)
(87 g) | Glass
(Particle
Size)
(200 g) | Glass (
Particle
Size)
(4 g) | Polystyrene
Spheres
(Nominal
Diameter 1
µm)
(5 mL) | Polystyrene
Spheres
(Nominal
Diameter
0.3 µm)
(5 mL) | Polystyrene
Spheres 30
µm
Diameter
Polystyrene
Spheres
(5 mL) | Polystyrene
Spheres
(Nominal Diameter
100 nm)
(5 mL) | Spheres
(Nominal | Particles Size
Distribution
Standard for
Gravity
Sedimentation
(5 g) | Thermal Spray Powder – Particle Size Distribution Yttria-Stabilized Zirconia (Spheroidal) (10 g) | Thermal Spray
Powder -
Particle Size
Distribution
Tungsten
Carbide/Cobalt
(Acicular)
(14 g) | Thermal Spray
Powder -
Particle Size
Distribution
Tungsten
Carbide/Cobalt
(Spheroidal)
(14 g) | Sand for
Sand
Sieve
Analysis
(3 x 130 g) | (Nominal 10
nm Diameter) | Gold
Nanoparticles,
Nominal 30
nm Diameter
(2 x 5 mL) | | Particle
Diameter
Distribution | 0.2 to 10 μm | 20 to 45
µm (635 to
325 mesh) | 100 to 400
µm (140 to
45 mesh) | 220 to
750 µm
(60 to 25
mesh) | 750 to
2450 µm
(20 to 10
mesh) | 2 to 12
µm | 0.895 µm | 0.269 µm | 29.64 µm | 0.1018 µm | 0.06039 μm | 0.33 to 2.19
µm | 10 to 150 μm | 9 to 30 µm | 18 to 55 µm | A (30 to
100 mesh)
C (70 to
200 mesh)
D (100 to
325 mesh) | 10 nm | 30 nm | Certified values are normal fontReference values are italicizedValues in parentheses are for information only ## 301.1 - Particle Size (powder and solid forms) These SRMs are intended for evaluating and calibrating specific types of particle size measuring instruments, including light scattering, electrical zone flow-through counters, optical and scanning electron microscopes, sedimentation systems, and wire cloth sieving devices. SRMs 1003c, 1004b, 1017b, 1018b and 1019b each consist of soda-lime glass beads covering a particular size distribution (PSD) range. RM 8010 is a three bottle set of different sands (A, C and D), intended for use in sieving only, and covers the sieve size range from 30 mesh to 325 mesh. SRM 659 consists of equiaxed silicon nitride particles measured using sedimentation. SRM 1978 consists of granular, irregular shaped zirconium oxide particles measured using sedimentation. SRM 1982 consists of spheroidal particles measured using sedimentation. SRM 1982 consists of spheroidal particles measured using sedimentation. SRM 1982 consists of spheroidal particles measured using sedimentation. SRM 1982 consists of spheroidal particles measured using sedimentation. SRM 1982 consists of spheroidal particles measured using sedimentation. SRM 1961 is monodisperse latex particles in a water suspension produced by the National Aeronautics and Space Administration (NASA). RMs 8011, 8012 and 8013 are gold nanoparticles in water. PLEASE NOTE: The tables are presented to facilitate comparisons among a family of materials to help customers select the best SRM for their needs. For specific values and uncertainties, the certificate is the only official source. 8013 8634 Ethylene fetrafluoroethylene for Particle Size Distribution and Morphology (20 mL) highly polydisperse, irregular morphology Certified values are normal fontReference values are italicizedValues in parentheses are for information only